Материалы сайта
Это интересно
Коррозия меди в 5М изопропанольных растворах НС1
МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Тамбовский государственный университет им. Г.Р. Державина КАФЕДРА НЕОРГАНИЧЕСКОЙ И ФИЗИЧЕСКОЙ ХИМИИ Дипломная работа Коррозия меди в 5М изопропанольных растворах НС1 Исполнитель: выпускник химико- биологического факультета заочного отделения О.Н. Ларина Руководитель: кандидат химических наук, старший преподаватель Бердникова Г.Г. Рецензент: Допущена кафедрой к защите в ГАК __________1999 г. протокол № Зав. кафедрой неорганической и физической химии Л.Е. Цыганкова Тамбов-1999 ОГЛАВЛЕНИЕ Стр. Введение 3 I. Литературный обзор 2. Общая характеристика меди 4 3. Коррозионное и электрохимическое поведение меди. 12 II. Методика эксперимента. 25 III. Экспериментальные результаты и их обсуждение 28 IV. Выводы. 45 V. Литература. 47 Введение Проблема коррозионной стойкости конструкционных материалов до сих пор является весьма актуальной для современной промышленности. Принимая во внимание размеры ущерба от коррозии и колоссальное число различных металлов и их сплавов а также коррозионно агрессивных сред, очевидно, что в этой области науки еще долго будет существовать обширное поле для исследований. В последние десятилетия все возрастающее внимание стали уделять коррозионному и электрохимическому поведению металлов в неводных средах, в частности, на основе органических растворителей. Оказалось, что многие металлы, обладающие пассивностью в водных агрессивных растворах подвергаются весьма интенсивному разрушению в неводных. С другой стороны, ионизация некоторых металлов в неводных средах осуществляется до более низковалентных частиц, чем в соответствующих водных, что означает снижение энергозатрат на электрохимическую обработку металлов и является убедительны аргументом в пользу применения смешанных и неводных растворов электролитов для электрохимического размерного формообразования. Поэтому детальное выяснение роли органических компонентов коррозионной среды подвигает к более адекватному познанию механизмов коррозии, к пониманию роли воды и комплексов, образующихся в системе как за счет исходных компонентов раствора, так и за счет продуктов коррозионных процессов (как электрохимических, так и чисто химических). Настоящая дипломная работа посвящена изучению некоторых аспектов коррозии меди в концентрированных изопропанольных растворах хлороводорода. I. ЛИТЕРАТУРНЫЙ ОБЗОР 1. Общая характеристика меди [[i]] ( Историческая справка. Семь металлов принято называть доисторическими. Золото, серебро, медь, железо, олово, свинец и ртуть были известны людям с древнейших времен. Роль меди в становлении человеческой культуры особенна. Каменный век сменился медным, медный - бронзовым. Не везде этот процесс шел одновременно. Коренное население Америки переходило от каменного века к медному в XVI в н.э. всего 400 лет назад! А в Древнем Египте медный век наступил в IV тысячелетии до н.э. Два миллиона 300 тысяч каменных глыб, из которых примерно 5000 лет назад была сложена 147-метровая пирамида Хеопса, добыты и обтесаны медными инструментами. Подобно серебру и золоту, медь иногда образует самородки. Видимо, из них около 10 тысяч лет назад были изготовлены первые металлические орудия труда. Распространению меди способствовали такие ее свойства, как способность к холодной ковке и относительная простота выплавки из богатых руд. Медный век длился около тысячи лет - вдвое меньше, чем бронзовый. Характерно. Что в Греции культура меди зародилась позже, чем в Египте, а бронзовый век наступил раньше. Руда, из которой выплавляли медь египтяне, не содержала олова. Грекам в этом отношении повезло больше. Они добывали «оловянный камень» для выплавки бронзы иногда там же, где и медную руду. Искусство выплавки и обработки меди от греков унаследовали римляне. Они вывозили медь из покоренных стран, в первую очередь из Галлии и Испании, продолжали начатую греками добычу медной руды на Крите и Кипре. Кстати, с названием последнего острова связывают латинское название меди - «купрум». Медь сыграла выдающуюся роль не только в становлении материальной культуры большинства народов, но и в изобразительном искусстве. В этом качестве медь прошла через века; и в наши дни делают барельефы и гравюры из меди. (Медь в природе. По распространению в земной коре (4,7.10-3 % по массе) медь следует за никелем и занимает всего лишь 26-е место среди других элементов. Медь встречается в природе в виде самородков, порой значительных размеров. Так, в 1957 году в США в районе Великих озер был найден самородок массой 420 тонн. Интересно. Что выступающие части его были отбиты еще каменными топорами. Однако, самородная медь в наше время составляет незначительную часть от общего производства металла. Подавляющая часть меди присутствует в горных породах в виде соединений. Из сотен минералов меди промышленное значение имеют немногие, в частности, халькоперит -медный колчедан CuFeS2, халькозин - медный блеск - Cu2S, ковелин - CuS, малахит - СuCO3.Сu(OH)2, азурит - 2СuCO3.Сu(OH)2. (Физические и химические свойства. Медь - металл красного, в изломе розоватого цвета, в тонких слоях при просвечивании приобретает зеленовато-голубой оттенок. Плотность меди -8,96 г/см3, температура плавления -1083 0С, температура кипения - 2600 0С. Это довольно мягкий, ковкий металл, из него можно прокатывать листы толщиной всего лишь в 2,5 микрона (в 5 раз тоньше папиросной бумаги). Медь хорошо отражает свет, прекрасно проводит электричество и тепло. Медь, серебро, золото составляют побочную подгруппу первой группы периодической системы Д.И. Менделеева. С щелочными металлами их сближает лишь способность образовывать одновалентные катионы. Для меди и ее аналогов характерно то, что они могут давать соединения с валентностью, превышающей номер своей группы. Кроме того, элементы подгруппы меди, в отличие от щелочных металлов, склонны к комплексообразованию, образуют окрашенные соли, т.е. проявляют свойства, сближающие их с никелем, палладием, платиной. Такое поведение меди, серебра, золота объясняется конфигурацией внешних электронных оболочек их атомов. У атома меди самая наружная (4-я от ядра) оболочка содержит один s-электрон, ему предшествуют десять d-электронов (3-й от ядра) оболочки. Атомы меди и ее сплавов могут при образовании соединений терять не только самый внешний s -электрон, но один или два электрона предвнешнего d-уровня, проявляя более высокую степень окисления. Для меди окислительное число +2 (валентность II) , более характерно, чем +1 (валентность I). Существует также немногочисленное число соединений меди (III). Медь химически малоактивна и в чистом, сухом воздухе не изменяется. Однако атмосфера, в которой мы живем содержит водяные пары и двуокись углерода. Поэтому не удивительно, что, например, произведения скульптуры, изготовленные из меди и бронзы, со временем покрываются зеленоватым налетом - «патиной». В обычной атмосфере патина состоит из основного карбоната меди (малахита), в атмосфере, содержащей двуокись серы (SO2), медные изделия покрываются основным сульфатом CuSO4 .3Cu(OH)2, а вблизи моря - основным хлоридом CuC12 . 3Cu(OH)2. Интересно, что патина образуется только во влажном воздухе (при влажности выше 75%). Патина придает изделиям из меди и бронзы красивый, как говорится, «старинный» вид. А сплошной налет патины обладает еще и защитными свойствами, предохраняя от дальнейшего разрушения. Но образовавшаяся пленка может быть с дефектами и поэтому недостаточно надежной. Гораздо прочнее такое же покрытие, нанесенное на металл искусственно. Один из способов искусственного получения патины таков: изделие из меди или бронзы обрабатывают серной кислотой и затем выставляют на воздух. Через некоторое время операцию повторяют. Образующийся сульфат меди гидролизуется и постепенно превращается в устойчивую пленку CuSO4 .3Cu(OH)2. Если быстро погрузить в холодную воду раскаленный докрасна кусок меди. То на его поверхности образуется ярко-красная пленка оксида меди (I). При умеренном же нагревании меди на воздухе поверхность ее покрывается черной окисью CuO. Обычно образцы меди содержат сотые доли Сu2O. При нагревании такого металла в атмосфере, содержащей водород и некоторые другие газы (СО, СН4) происходит восстановление Cu2O: Cu2O + H2 = 2Cu + H2O (1) Cu2O + CO = 2Cu + CO2 (2) Образовавшиеся пары воды и двуокись углерода выделяются из металла, вызывая появление трещин. А это резко ухудшает механические свойства меди. («водородная болезнь»). Гидроксид меди (II) выпадает в виде объемистого голубого осадка при действии щелочей на растворы солей двухвалентной меди. Это слабое основание, образующее с кислотами соли. Впрочем, свежеприготовленный Cu(OH)2 растворяется и в концентрированных растворах щелочей, но его кислотный характер выражен слабо. Фтор, хлор, бром реагируют с медью, образуя соответствующие галогениды двухвалентной меди, например: Cu + C12 = CuC12 (3) При взаимодействии иода с нагретым порошком меди получается иодид одновалентной меди: 2Cu + J2 = 2СuJ (4) Медь горит в парах серы: Cu + S = CuS (5) К сере медь проявляет большее сродство, чем к кислороду. На этом свойстве основан пиролитический способ получения меди. В ряду напряжений металлов медь стоит после водорода. В бескислородных кислотах она не растворяется, но легко окисляется азотной кислотой: 3Cu + 8HNO3 (р) = 3Cu(NO3)2 + 2NO + 4H2O (6) и концентрированной серной кислотой: Cu + 2H2SO4 (к) = CuSO4 + SO2 + 2H2O (7) В целом химические свойства меди наглядно иллюстрирует схема 1. (Получение и очистка меди. Почти все мировые производства металлической меди в настоящее время основываются на переработке сульфидных, оксидных и карбонатных руд. Медные руды, как правило, содержат большое количество пустой породы, так что непосредственное получение из них меди экономически невыгодно. Поэтому руды сначала измельчают, размалывают и обогащают с помощью гравитационных и флотационных методов. В зависимости от характера руды и содержания в ней меди, для извлечения ее концентраты руд обрабатываются пирометаллургическими и гидрометаллургическими методами. | | |Схема 1. [[ii]] | |[pic] | |- во влажном воздухе ( Сu2O | | | |- во влажном воздухе в присутствии СО2, Н2S, SO2 ( основные карбонаты и | | | |сульфат меди | | |[pic] |- с NH4OH ( [Cu(NH3)4](OH)2 | | | |- c KCN + O2 + H2O ( K[Cu(CN)2] или К3[Cu(CN)4] | | | |- c HNO3 ( Cu(NO3)2 . n H2O | |[pic] | | | | | |- на воздухе ( Cu2O и СuO | | | |- c F2, C12, Br2, J2 ( CuF2, CuC12, CuBr2, CuJ2 | | | |- c S, Se, Te ( CuS, CuSe, CuTe | | | |- с Н2S ( CuS | | |[pic] |- P, As, Sb, C, Si ( Cu3P, Cu3P2, Cu3As2, Cu3As, Cu5As2, Cu2Sb, Cu3Sb, | | | |карбид и силициды | | | |- с концентрированной НС1 на воздухе СuС12 | | | |- с концентрированно Н2SO4 ( CuSO4 . H2O | | | |- c NH3 ( Cu3N | | | |- c NO2 или NO ( Cu2O | Пирометаллургический метод используется при переработке руд с большим содержанием меди. Он основан на том, что оставшиеся после обогащения FeS2 и FeS окисляются кислородом легче, чем сульфиды меди CuS и Cu2S. При сплавлении концентратов полиметаллических сульфидных руд с флюсами в шахтных печах медь с определенной частью железа образует медный пек Cu2S.FeS, остальное железо. Цинк и другие металлы переходят в шлак в виде силикатов: мышьяк, сурьма, фосфор и частично сера превращаются в летучие оксиды. Гидрометаллургический метод применяется при переработке бедных медных руд и содержащих медь отходов других металлургических производств. С помощью некоторых химических реагентов (Н2SO4, NH4OH, NaCN, Fe2(SO4)) плохо растворимые соединения меди переводят в легко растворимые, а затем различными способами (простым выщелачиванием растворов, электролизом или с помощью ионнообменных смол) извлекают их из раствора. Получение чистого металла из сырого путем удаления примесей является целью металлургических процессов - афинажа и рафинировния. Методы афинажа различны у разных металлов, т.к. они могут основываться на окислении и восстановлении примесей, на ликвации (примеси с более высокой температурой плавления остаются нерастворенными), на агрегации (примеси с более низкой температурой плавления выделяются селективным отверждением), на адсорбции (примеси адсорбируются без участия химической реакции). Сырая медь, полученная металлургически, содержит 93-98,5% меди и загрязнена кислородом, железом, мышьяком, сурьмой, висмутом, кобальтом, оловом, серой и, возможно, серебром, золотом, платиной. Свинец, сера, селен, теллур, висмут и кислород - примеси, вредные для меди, а мышьяк, фосфор, никель, железо, марганец и кремний улучшают ее механические свойства. Для очистки сырой меди от примесей ее подвергают рафинированию, которое осуществляется двумя способами - пирометаллургическим и элекрохимическим. При пирометаллургическом окислении сырую медь расплавляют в отражательной печи, в которую вдувают сжатый воздух. В результате происходит частичное окисление таких элементов как сера, железо, никель, цинк, кобальт, олово, свинец, мышьяк, сурьма и связывание диоксида кремния с превращением в шлак. При нагревании расплава оксид серы (IV) полностью улетучивается, частично удаляются As2O3 и Sb2O3, а большая часть сурьмы остается в меди. Медь, рафинированная пирометаллургически содержит примеси Cu2O, Bi, Sn, иногда Ag, Au, Pt и платиновые металлы. Из такой меди отливают аноды, для дальнейшего получения электролитической меди. Электролизерами для электролитической очистки меди служат бетонные чаны со стенами, обложенными свинцовыми пластинами. В них наливают электролит - раствор сульфата меди с серной кислотой и добавкой сульфата натрия. В электролизер помещают аноды из пирометаллургически полученной меди и катоды из чистой меди. При пропускании тока на катоде осаждается чистая медь, а аноды растворяются в процессе окисления. Неметаллические примеси и металлы, менее активные, чем медь (Ag, Au, Pt, платиновые металлы), находящиеся на анодах выпадают в виде шлама на дно электролизера. При электролизе водного раствора сульфата меди на катоде осаждается чистая медь, а на аноде выделяется кислород. CuSO4 ( Cu2+ + SO42- (8) H2O (( H+ + OH- (9) На катоде: Cu2+ + 2e ( Cu0 На аноде: 2OН- - 2e ( 1/2O2 + H2O 2. Коррозионное и электрохимическое поведение меди. В атмосферных условиях в отличие от многих других металлов, медь не подвергается коррозии, так как на ее поверхности образуется тонкий ровный слой (пленка) продуктов коррозии, не содержащая никаких агрессивных соединений, способных при каких-либо условиях разрушать металл. Коррозия меди в атмосферных условиях - процесс самопроизвольно затухающий, так как продукты коррозии защищают поверхность металла от внешней среды. В воде и нейтральных растворах солей медь обладает достаточной устойчивостью, которая заметно снижается при доступе кислорода и окислителей. В морской воде, аэрируемой при малой скорости движения, медь характеризуется небольшим равномерным растворением (порядка 0,05 мм/год). При высоких скоростях течения жидкости, а также ударах струи скорость коррозии меди сильно повышается [[iii]]. Имеются данные о влиянии pH среды на депассивацию меди [[iv]] в хлоридсодержащих боратных буферных растворах. Установлено, что всем исследованном интервале рН при анодной поляризации медь переходит в пассивное состояние. При увеличении рН боратного буфера стационарный потенциал, потенциал пассивации и плотность тока пассивации уменьшается, т.к. изменяется структура, толщина и состав оксидной пленки на меди. В среде, близкой к нейтральной пассивирующая пленка состоит из оксидов Cu (I) и Cu (II), а в щелочной среде - в основном из оксида меди (I) и очень тонкой пленки оксида меди (II). В последнем случае толщина пленки меньше, а пористость больше. При увеличении рН в хлоридсодержащих боратных буферах потенциал питтиногообразования снижается (разблагораживается), что связано как с изменением происходящими в оксидной пленке, так и с тем, что начальные стадии депассивации меди протекают через образование смешанных гидроксокомплексов. При постоянном значении рН потенциал питтингообразования не зависит от концентрации NaC1. Предложена схема механизма начальных стадий инициирования питтингообразования меди в хлоридсодержащих боратных растворах, согласно которой лимитирующей стадией является диссоциация гидроксида Cu(ОН)2, а нуклеофильное замещение пассивирующего лиганда в поверхностном комплексе анионом-активатором протекает по диссоциативному механизму. В [[v]] приведены данные по коррозионному поведению меди М1 в 3% растворе хлорида натрия в сравнении с естественной морской водой, совокупность которых позволила авторам сделать вывод, что основным анодным процессом при коррозии меди в 3 % растворе NaC1 и морской воде является ее окисление в закись с последующим химическим растворением последней. Контролирующей стадией является отвод ионных форм меди (Сu+, CuCl2-, CuCl32-) в электролит. В хлоридных растворах с рН=0,5, содержащих ионы двухвалентной меди, по данным [[vi]] при катодной поляризации наблюдается компонента скорости растворения, независимая от потенциала за счет процесса репропорционирования: Cu + Cu2+ ( 2Cu+ (10) Медь весьма склонна к комплексообразованию. Например, в нейтральных хлоридных средах эффективный заряд переходящих в раствор ионов (mэфф) меди равен 1±0,01 [[vii]]. Предложен следующий стадийный механизм растворения меди c двумя возможными маршрутами ионизации : а) Сu + nCl- ® CuCl[pic] + е (11) б) Cu ® Cu+ + e (12) _________________________ Cu+ + nCl- ® CuCl[pic] Широкое применение в различных отраслях химической промышленности нашло химическое и электрохимическое травление меди. В медно-аммиачных травильных растворах, содержащих NH3 и NH4C1 [[viii]], установлена следующая последовательность формирования пассивирующих слоев с ростом потенциала: СuC12, Cu2O, CuO (при определенных условиях), CuC12.3Cu(OH)2 и CuC12 . 2NH4C1.H2O, либо их смесь. Различными электрохимическими и рентгенографическими методами было показано, что интенсивное вращение электрода удаляет лишь рыхлую часть продуктов реакции, оставляя пассивный слой. В любых условиях растворение идет через пассивную пленку. Изучение травления в растворах FeC12 показало, что химическое растворение меди протекает наряду с электрохимическим, основными продуктами которых являются CuC1 и Сu2О. Общая скорость ионизации металла определяется пассивированием поверхности меди малорастворимыми продуктами. Пассивирование для железо-хлоридных растворов тем глубже, чем позже оно наступает. Причиной является уплотнение слоя СuС1 в результате уменьшения количества дефектов в структуре, а также тот факт, что по сравнению с CuC12 в железо-хлоридных растворах той же концентрации количество свободных С1- ионов, не входящих в комплексы, больше, и, следовательно, лучше условия для пассивирования. Установлено, что образующийся при травлении меди пассивирующий слой CuС1 обладает полупроводниковыми свойствами и оказывает существенное влияние на протекание анодного растворения металла. При малых концентрациях FeC13 главную роль играет толщина поверхностного слоя, а при высоких концентрациях FeC13 - диффузия ионов Fe3+ в твердую фазу. Уменьшение экранирования поверхности электрода происходит при интенсивном перемешивании, снижение концентрации Fe3+ - ионов и повышение концентрации С1- -ионов, которые, по-видимому, облегчают растворение осадка CuC1тв, переводя в комплексные соединения типа CuC1[pic], CuC1[pic], Cu2C1[pic]. В средах на основе CuC12 и FeC13 растворение происходит по реакциям: Cu + CuC12 ( 2CuC1 (13) Cu + FeC13 ( CuC1 + FeC12 (14), протекающим по электрохимическому механизму, т.е., например, как совокупность реакций: Сu + C1- (CuC1 + e (15) CuC12 + (C1- + CuC1 (16) Первично образующаяся пленка СuС1, наблюдаемая визуально на поверхности меди, при ее травлении растворяется с образованием комплексных ионов CuC1[pic], CuC1[pic], которые в свою очередь могут окисляться кислородом воздуха до меди (II). Электрохимическое поведение меди комплексов Сu (I) в расплаве эквимолярной смеси NaF-KC1 [[ix]]. Установлено, что процесс разряда комплексов Сu (I) до металла протекает обратимо. Определены коэффициенты диффузии Сu (I) и условные стандартные потенциалы ( Сu+ /Cu и ( Сu2+/Cu+. Показано, что при наличии большого избытка анионов фтора к меди (I) в расплаве происходит стабилизация двухвалентного состояния меди, а разряд комплексов Cu (II) протекает в одну двухэлектронную реакцию. В отсутствие же большого избытка F - образующиеся хлоридно-фторидные комплексы восстанавливаются через две одноэлектронные стадии. При изучении электролиза растворов трехводного нитрата меди Сu(NO3)2.3H2O в диметилсульфоксиде (ДМСО) с медными анодами [[x]] было обращено внимание на чрезвычайно высокий анодный выход по току в расчете на ионы меди (II). Влияние плотности тока (Х1) и температуры (Х2) на анодный выход по току (ВТА) изучали методом планирования эксперимента (Бокса- Уильсона). Концентрацию соли в растворе 0,1М сохраняли постоянной. В качестве основного уровня были приняты плотность тока 6 мА/см2 и температура 55 0С. На основании проведенных экспериментов получено параметрическое уравнение (17). Отметим прежде всего высокое значение первого коэффициента уравнения регрессии: ВТА = 188,58 - 0,32Х1 + 0,80Х2 - 0,33Х1Х2 Судя по значениям других коэффициентов, большее влияние на исследуемый процесс оказывает температура. Величина выхода по току, рассчитываемая по (17), будет иметь разумные значения, если анодное окисление меди в диметилсульфоксидном растворе описывать уравнением Сu - e ( Cu+ (18) Возможно, этому благоприятствует способность молекул ДМСО адсорбироваться преимущественно в области положительных зарядов поверхности металла и прочно сольватировать ионы меди (I), взаимодействуя с молекулами воды, вносимой в электролит в составе соли, по реакции: Cu+ + H2O ( CuOH + H+ (19), 2Cu+ + H2O ( Cu2O + 2H+ (20), в результате чего образуются в растворе ярко окрашенные взвеси гидроксида желтого цвета и оксида красного цвета, хорошо наблюдаемые в анодном пространстве визуально. Известны публикации по изучению анодного растворения меди в ацетонитриле [[xi]]. Температурно-кинетическим методом и методом вращающегося дискового электрода установлено, что при содержании в растворе 20 объемных процентов воды процесс анодного растворения меди в ацетонитрильных растворах Сu(NO3)2 лимитируется подводом окислителя в зону реакции. С увеличением концентрации воды процесс переходит в область смешанной кинетики и наблюдается уменьшение скорости травления вследствие изменения лимитирующих стадий сопряженных реакций растворения меди. Это связано с тем, что по сравнению с водными растворами, ионы Сu+ в ацетонитриле обладают более высокой энергией сольватации, что обусловливает их стабилизацию. Увеличение содержания воды приводит к разрушению сольватов Cu+ с ацетонитрилом, дестабилизации ионов Сu+, в результате чего процесс травления осложняется. Коррозия меди в метанольном, н-пропанольном и водно-метанольном растворах Н2SO4, насыщенных кислородом, исследована в [[xii]]. Показано, что растворение протекает по каталитическому механизму так же, как и в водном растворе, при котором кислород восстанавливается в химической реакции ионами Cu+, а медь растворяется за счет сопряженных реакций. Опыты проводились с медью, осажденной на платине, при перемешивании раствора, с концентрацией кислоты (Н2SO4) 0,5 моль/л при t=25 0C. Судя по экспериментальным данным, предельный катодный ток по кислороду (iпред) превышает ту же величину в воздухе приблизительно в 5 раз, т. е. катодный ток по кислороду практически линейно зависит от концентрации О2. Увеличение перемешивания не влияет на iкорр , но увеличивает iпред по О2, следовательно, тафелевский участок является кинетическим, а участок предельного тока - диффузионный. Лимитирующей стадией восстановления О2, по мнению авторов, является присоединение первого электрона : О2 + е ® О2- (21), за которым следует ассоциация О2- + Н+ ® НО2 (22), Авторами [10] предложен следующий механизм коррозии меди в метанольной сернокислой среде: Сu+ + O2 ® Cu2+ + O2- (23) Cu ® Cu+ + e (24) Cu2+ + e ® Cu+ (25) и далее: HO2 + Cu+ ® Cu2+ + HO2- (26) НO2- + H+ ® H2O2 (27) Н2О2 + Сu+ ® Сu2+ + ОН- + ОН (28) ОН + Сu+ ® Cu2+ + OH- (29) OH- + H+ ® H2O (30) Подтверждением протекания химической реакции наряду с электрохимическим механизмом является тот факт, что измеренная радиометрически эффективная валентность меди, переходящей в раствор, равна 1. Достаточно подробно изучено электрохимическое и коррозионное поведение меди в кислых спиртовых хлоридных средах, где комплесообразование меди особенно заметно [13-17]. В метанольных растворах хлороводорода исследована [[xiii]] скорость коррозии определялась на неподвижном и вращающемся дисковом электродах по данным химического анализа коррозионной среды на медь посредством трилонометрического титрования в присутствии мурексида. Природа катодного процесса при коррозии меди определяется концентрацией кислоты и воды. В условно безводных растворах СНС1 = 10-2-10-1 моль/л растворение меди протекает с кислородной деполяризацией. На это указывает наличие участка предельного тока по кислороду на катодной поляризационной кривой, величина которого в пределах ошибки эксперимента не зависит от СНС1. Повышение содержания НС1 в 10 раз приводит к появлению водородной деполяризации, чего не наблюдается в водных растворах. Возможность параллельного протекания водородной поляризации в метаноле, по мнению авторов [13] связана со снижением перенапряжения водорода на меди и разблагораживанием металла в спирте (по сравнению с водными растворами). Введение воды приводит к снижению iпред. При содержании 10 мас.% Н2О за счет сдвига равновесия вправо СН3+ + Н2О ( Н3О+ + СН3ОН (31) носителями кислотных свойств являются протоны в форме ионов гидроксония. Одновременно повышается перенапряжение водорода и коррозия протекает с кислородной деполяризацией. По данным кулонометрических измерений медь переходит в раствор с эффективной валентностью (Zэф), близкой к 1 независимо от величины ионной силы раствора, скорости вращения диска (() и потенциала электрода. Это подтверждается и сопоставлением кинетики анодного процесса по поляризационным кривым и химическому анализу раствора. Введение двухзарядных ионов меди в виде СuC12 снижает Zэф до 0,6-0,8. Одновременно существенно возрастает ток саморастворения металла и величина предельного тока. Увеличивается равновесный потенциал, разряд ионов водорода становится невозможным, одновременно появляется дополнительная катодная реакция восстановления Сu2+ до ионов Cu+ (12), т.к. однозарядные ионы в хлоридных метанольных растворах, видимо, значительно стабильнее двухзарядных. Скорость коррозии меди понижается с увеличением содержания воды. Хлороводород оказывает обратное действие. Величины скорости коррозии в 10- 20 раз меньше соответствующих предельных токов катодных поляризационных кривых. Следовательно, растворение определяется кинетическими факторами и не связано с транспортными ограничениями подвода деполяризатора. Скорость коррозии меди значительно возрастает с увеличением концентрации хлорной меди, с порядком близким к 1. Одновременно предельный ток также растет с порядком 0,9. Однако iкорр ( iпред, т.е в присутствии Сu2+ скорость коррозии меди больше таковой, рассчитанной при протекании ее на предельном токе. Следовательно, по мнению авторов [13], имеет место параллельная реакция, видимо, неэлектрохимической природы - реакция репропорционорования (10). Последнее удовлетворительно объясняет и меньшую величину эффективной валентности в присутствии CuC12. В 1М условно безводных растворах НС1 скорость коррозии преимущественно определяется кинетикой катодной реакции, на что указывает резкое возрастание скорости саморастворения при введении дополнительного катодного деполяризатора. Скорость коррозии меди в этиленгликолевых растворах НС1 [[xiv]] также в значительной мере обусловлена химической реакцией репропорционирования (10). Ионизация меди протекает до однозарядных ионов, а наличие Cu2+ в растворе связано с окислением ионов Сu+ растворенным кислородом. В работе [14] изучена скорость коррозии меди в этиленгликолевых растворах НС1 как функция концентрации воды (0,4-10 мас.%), хлороводорода (0,1-3,0 моль/л) и хлорной меди (10-2-10-1 моль/л). Исследования проведены в кислородной атмосфере при комнатной температуре на неподвижном электроде из меди марки М1. Скорость коррозии после двухчасовых испытаний определялась посредством анализа среды. Медь корродирует в исследуемых средах с кислородной деполяризацией, что непосредственно следует из характера катодных поляризационных кривых. Величины iпред в условно безводных этиленгликолевых растворах (0,1-1,0 моль/л) составляет 20(10 мкА/см2 и равна 95(5 мкА/см2 для 1М водных сред. Его изменение при введении 2 и 10 мас.% Н2О находится в пределах ошибки эксперимента. В 1М водном растворе НС1 скорость коррозии, пересчитанная на электрохимические единицы (iобщ) в 3 раза больше предельного тока, а , следовательно, химический процесс репропорционирования играет значительную роль. Однако, наличие добавок ионов Cu2+ сказывается иначе, чем в спирте. По мере введения СuС12 разница между iобщ и iпред уменьшается и, а затем они становятся одинаковыми. Это указывает на то, что растворении меди в 1М водном ратворе в присутствии Cu2+>10-2 моль/л практически полностью определяется электрохимической коррозией, катодная реакция которой (12) протекает на предельном токе и лимитирует процесс в целом. Причины этого легко понять, если учесть, что введение 5.10-2 моль/л ионов Cu2+ повышает величину предельного тока в у.б. этиленгликоле и воде соответственно до 100 и 2500 мкА/см2. В воде относительный вклад реакции репропорционирования становится пренебрежительно мал. Скорость коррозии меди увеличивается с ростом концентрации НС1. Опыты показали, что порядок анодной ионизации по ионам водорода и хлора равен 2. Величина ((1gK/( lgCHC1)Ci составляет 0,15-0,20, что указывает на отсутствие влияния кинетики анодной реакции на скорость коррозии. Наличие (( lgK/( lgCHC1)Ci ( 0 при одновременном ((lgiпред/(lgCHC1)Ci= 0, видимо, связано, с ускоряющим влиянием НС1 на реакцию репропорционирования (10), что может быть обусловлено, в свою очередь, различной закомплексованностью ионов Cu2+. Снижение скорости коррозии меди по мере введения воды также можно объяснить замедлением процесса (10). В [[xv]] отмечается, что скорость анодного растворения меди в присутствии хлорид-ионов зависит от скорости вращения электрода. Однако, если процессу растворения меди в метаноле присущ чисто диффузионный механизм, то в этаноле начинают проявляться одновременно и кинетические затруднения. Тангенс угла наклона прямых lgi0 - lgCC1- составляет 2. Эти результаты показывают, что процесс растворения меди в этаноле ограничен в основном диффузией CuC12 в глубь самого раствора. При переходе от этанола к пропанолу следует ожидать усиление доли кинетических затруднений; действительно, поляризационные кривые анодного растворения меди показывают, что процесс контролируется как диффузией, так и кинетикой. Так, например, положение кривых плотность тока - потенциал зависит от числа оборотов электрода. Прямолинейные зависимости были получены в координатах i-1 - (-1/2, причем отрезки, отсекаемые от оси ординат, представляют собой значения кинетических плотностей токов. Тафелевский наклон анодной поляризационной кривой составляет 60 мВ. Полученные результаты могут иметь объяснения, аналогичные предложенным для пентан-2,4-диона: в случае быстрой электрохимической реакции образуется сольватированный СuC1, который адсорбируется на электродах. Далее он реагирует с хлорид-ионами с образованием хлорокомплекса. Это превращение можно записать как реакцию замещения: [CuC1(ROH)n] + C1- ( [CuC12(ROH)n-1] + ROH (32) Очевидно, что с увеличением цепи алкильной группы возрастают стерические затруднения протекания этой реакции, так что скорость образования комплекса в ряду метанол ( этанол ( пропанол снижается. Процесс анодного растворения меди определяется как свойствами анионов фона, так характером растворителя. Оба эти фактора влияют на диффузию ионов меди. Происходит также взаимодействие между молекулами растворителя и анионами. Кинетика анодной ионизациии меди в системе изо-С3Н7ОН–Н2О–НС1, как функция природы растворителя (0,2-10 мас.% воды), ионной силы раствора (1- 3), потенциала электрода, гидродинамических условий в приэлектродном слое и характера атмосферы изучена в [[xvi]]. Показано, что предварительное насыщение рабочего раствора кислородом не оказывает влияния на ход анодных поляризационных кривых. С учетом межфазного потенциала определены порядки реакции анодной ионизации меди по ионам водорода и хлора. Тафелевский наклон анодных кривых во всех случаях близок к 60 мВ. В растворе с содержанием Н2О 0,2% nH+=1 или 2, а nС1- близок к единице (ионная сила 1 и 2) и двум (ионная сила 3). В смешанном водно-спиртовом растворителе во всех случаях nH+=0 , nС1- =2. На основе полученных кинетических параметров предложен механизм анодного растворения меди в исследуемых условиях можно представить в виде следующего двухстадийного процесса с последней лимитирующей стадией: Сu + mH+C1– ( [pic] + е (33а) Сu + mC1– ( Cu(C1[pic])-адс + е (33б) [pic] ( CuC1[pic]+ mH+ (34а) Cu(C1[pic])-адс ( CuC1[pic] (34б) Порядок реакции по ионам водорода равен n, где 0iэх во всем исследованном интервале концентраций CuC12 и воды, что говорит о наличии неэлектрохимической составляющей коррозии. 4. Ведение 10 мас.% Н2О в среды с содержанием CuC12 в количестве 10-4 - 10-2 моль/л вызывает небольшое снижение скорости коррозии в 5М изопропанольных растворах НС1, а в интервале СCu2+ 10-2-10-1 моль/л заметно стимулирует коррозию меди. 5. Определены кинематическая и динамическая вязкости всех изученных составов. Показано, что с повышением концентрации CuC12 вязкость растворов увеличивается; введение 10 мас.% Н2О в растворитель практически не сказывается на величинах ( и ( ----------------------- ЛИТЕРАТУРА [i]. Краткая химическая энциклопедия. М., 1964. Т.3. С.76-82. [ii]. Рипан Р., Четяну И. Неорганическая химия. М., Мир. Т.2. С.681- 723. [iii]. Томашов Н.Д. Теория коррозии и защиты металлов. М., 1959. [iv]. Рылкина М.В., Андреева Н.П., Кузнецов Ю.И. Влияние среды на депассивацию меди. //Защита металлов. 1993. Т.29. №2. С.207-214. [v]. Чернов Б.Б., Кузовлева К.Т., Овсянникова А.А. Коррозионное поведение меди в 3%-ном растворе хлорида натрия и морской воде. //Защита металлов. 1985. №1. [vi]. Астахова Р.К., Красиков В.С. К вопросу о поведении меди в солянокислых растворах. // Журн. прикл. химии. 1971. Т.44. №2. С.363-371. [vii]. Скорчелетти В.В., Степанов А.И., Куксенко Е.П. Анодное поведение сплавов системы медь-цинк в 0,1М растворе хлористого натрия. //Журн. прикл. химии. 1958. Т.31. №12. С.1823-1831. [viii]. Кузнецова Л.А., Коварский Н.Я. Электроосаждение и электрорастворение меди на электроде, предварительно модифицированном тиомочевиной. //Электрохимия. 1993. Т.29. №2. С.234-238. [ix]. Кузнецов С.А. Электрохимическое поведение меди в хлоридных и хлоридно-фторидных растворах. // Электрохимия. 1994. Т.27. №11. С.. [x]. Вахидов Р.С., Джемилев У.М., Селимов Ф.А., Хазиева А.Р. Анодное поведение меди в диметилсульфоксиде.// Электрохимия. 1993. Т.29. №8. С.. [xi]. Атоносянц А.Г., Кучеренко А.В., Шумелов В.И. анодное растворение меди в водно-ацетонитрильных растворах нитрата меди (II). // Электрохимия. 1988. Т.24. №5. С.653. [xii]. Молодов А.И., Янов Л.А., Лосев В.В. Механизм коррозии меди в метаноле и н-пропаноле в присутствии кислорода. // Защита металлов. 1985. Т.21. №6. С.884-889. [xiii]. Шарифулина И.И., Цыганкова Л.Е., Вигдорович В.И. Коррозия меди в метанольных растворах хлористого водорода. //Журн. Прикл. химии. 1977. Т.50. №10. С.2417. [xiv]. Вигдорович В. И., Цыганкова Л. Е., Шарифулина И. И. Коррозия меди в этиленгликолевых растворах HСl. // Химия и хим. технология. 1977 №8, С.1179. [xv]. Шефер В., Дубинин А.Г. Анодное поведение меди в различных ратворителях в присутствии хлорид-ионов. //Электрохимия. 1996. Т.32. №3. С.333-338. [xvi]. Цыганкова Л.Е., Вигдорович В.И., Бердникова Г.Г., Машкова Т.П. Анодная ионизация меди в растворах изо-С3Н7ОН–Н2О–НС1. //Электрохимия. 1998.Т.34. №8. С.848-854. [xvii]. Бердникова Г.Г., Машкова Т.П., Ермолова Е.Е., Губанова Н.А., Шувалова С.И., Пашенцев А.В., Цыганкова Л.Е. Коррозия и электрохимическое поведение меди в системе НС1 - пропанол-2 - Н2О. //Вестник ТГУ. 1997. Т.2. Вып.1. С.12-18. [xviii]. Алцыбеева А. И., Левин С. З., Ингибиторы коррозии металлов. Л.: Химия. 1968. [xix]. Карякин Ю.В., Ангелов М.И. Чистые химические реактивы, М. ; Химия. 1974. С.186. [xx]. Бердникова Г.Г. Автореферат канд. дис. Тамбов. 1998. 21с. [xxi]. Кухлинг Х. Справочник по физике: Пер. с нем. - М: Мир, 1982. С.128-140.